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New measurements of the vapor-phase viscosity of phenol were performed from 
437 up to 624K and for densities between 0.006 and 0.023mol-L -1 in an 
all-quartz oscillating-disk viscometer with small gaps. Thus, including our 
own measurements reported earlier, experimental data are available in the 
temperature range between 376 and 639 K and in the density range from 0.001 
up to 0.023 mol. L -1. The data were evaluated with a density series for the 
viscosity in which only a linear density contribution is included. The values of 
the second viscosity virial coefficient obtained for phenol as well as for benzene, 
toluene, and p-xylene were compared with results of the Rainwater-Friend 
theory and of the modified Enskog theory on the basis of the Lennard-Jones 
12-6 potential. The agreement is reasonable, when the potential parameter 
ratios determined by Bich and Vogel are used. The influence of bound dimers 
seems to he already taken into account in the three-monomer contribution 
according to Hoffman and Curtiss. 

KEY WORDS: phenol; second viscosity virial coefficient; transport properties; 
viscosity. 

1. I N T R O D U C T I O N  

The viscosity of a moderately dense gas may be represented at temperature 
T and density p by a density expansion limited to the first power, 

r l (T ,p)=qo(T)+rh(T)p+ . . . .  q o ( T ) [ l + B , ( T ) p +  . .-] (1) 

The collisional process between pairs of monomers in the limit of zero den- 
sity is taken into account in the t/0 term and is described by means of the 
kinetic theory of dilute gases [1, 2]. Although this theory originated by 
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Chapman and Enskog has reached a very high level, exact calculations on 
the basis of a well-established intermolecular potential model are available 
only for monatomic gases. In order to calculate ~/0 in the case of 
polyatomics, some approximations have to be made with respect to the for- 
mal kinetic theory as well as to the intermolecular potential surface. There 
seems to be some progress in the evaluation of the cross sections needed for 
~/o for the diatomic nitrogen gas [3]. 

In addition, collisional processes between pairs of monomers con- 
tribute to the linear-in-density correction ~/1 through collisional transfer. 
But collisions among three monomers and between a monomer and 
a dimer also contribute to this initial density viscosity coefficient q 1- 
The theoretical basis of ~/1 is less well developed, although certain 
improvements were reached during the last 10 years. Rainwater and Friend 
[-4-6] developed a microscopically based theoretical model for the second 
transport virial coefficients B, and B~ which is limited to monatomic gases 
in the case of thermal conductivity 2. Unfortunately, the calculations were 
restricted to the Lennard-Jones 1>6 potential and to pure fluids. This 
model includes ideas by Stogryn and Hirschfelder I-7] as well as by 
Hoffman and Curtiss [8]. The most important problem, which has to be 
taken into consideration for real molecules with both repulsive and attrac- 
tive forces, is the formation of bound states. The progress achieved by 
Rainwater and Friend consists in that the two-monomer eollisional transfer 
contribution is evaluated only for the free phase space so that bound states 
can be considered separately. But the three-monomer contribution 
proposed originally by Hoffman and Curtiss and used by Rainwater and 
Friend could possibly also include effects of the formation of bound states. 
To advance the understanding of the approximation procedure, an 
experimental determination of the viscosity of polyatomic gases or vapors 
with polar interactions could be helpful, because a formation of dimers 
should occur to a larger extent. 

The present paper reports results of the vapor-phase viscosity of 
phenol at low and moderate densities in a comparably large temperature 
range. The experimental data were evaluated in order to obtain values of 
the reduced second viscosity virial coefficient B* as a function of the 
reduced temperature T* on the basis of the Lennard-Jones 12-6 potential 
distance and energy parameters o- and e. 

B* =~-~ (2) 

kT  
T* = - -  ( 3 )  
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Here k is Boltzmann's constant. The results for phenol have been compared 
with the Rainwate~Friend theory, including improved potential parameter 
ratios for well depth and collision diameter due to Bich and Vogel [9], 
with the modified Enskog theory, and with results for some other aromatic 
vapors. 

2. EXPERIMENTAL RESULTS 

The experiments were performed in an all-quartz oscillating-disk 
viscometer. Its characteristics have already been described previously [10]. 
The basic principles of design and construction [ 11 ] and details of calibra- 
tion and of performance and evaluation of the measurements have been 
described previously, too [12, 13]. The viscometer was recalibrated at 
room temperature for a relatively large range of the boundary-layer thick- 
ness according to the quasi-absolute theory originated by Newell [14]. 
Reference values of carbon dioxide stated with an uncertainty of less than 
_+0.15% by Kestin etal. [15, 16] were used. Measurements on carbon 
dioxide at low and moderate densities between room temperature and 
683 K were carried out as a test of the performance of the viscometer. The 
uncertainty of the experimental data has been estimated to be between 
_+0.15% at room temperature and +0.2-0.3% at the highest tem- 
peratures, whereas the reproducibility is even better. 

Phenol of analytical reagent quality supplied by Berlin-Chemie was 
used as initial product for a rectification. The middle fractions were addi- 
tionally purified by zone melting repeated five times. In a special glass 
apparatus the final product was dried by a molecular sieve, 4 A, and its 
melting point at atmospheric pressure as a criterion of purity was deter- 
mined to be 40.82 + 0.03~ Then, the substance was degassed by repeated 
freezing and evacuation and filled into small glass ampoules in the same 
apparatus. Finally, the evacuated viscometer was filled by sublimation of 
the weighed samples. 

Four series of measurements each differing in density were performed. 
The temperature range was started at a temperature at which the substance 
existed completely as a vapor and continued to approximately 623 K. In 
order to test whether there is any thermal decomposition, a check measure- 
ment was carried out at a lower temperature after the highest temperature 
had been attained. But the result of the check measurement of a series can- 
not be considered sufficient, because the temperature at which the decom- 
position started may have not turned up clearly enough or a reversible 
process may have remained concealed. As any thermal alteration of the 
substance is largely increased at high temperatures and at relatively low 
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Table I. Viscosity of Phenol Vapor 

Temperature Viscosity 
T 

(K) (#Pa .s) 

Series 1 old, 
p '=0 .116 k g . m  -3 
p = 1.23 x 10 _3 mol.  L -1 

375.75 9.046 
403.76 9.677 
434.54 10.387 
465.41 11.098 
500.23 11.912 
537.32 12.799 
566.81 13.528 
596.38 14.270 
639.02 15.316 
500.16 11.928 

Series 2 old, 
p '=0.271 k g . m  3 
p = 2.88 x 10 -3 mol.  L 1 

391.74 9.391 
410.47 9.823 
439.43 10.492 
482.49 11.493 
528.92 12.580 
576.52 13.725 
632.94 15.091 
390.96 9.370 

Series 3 old, 
p' = 0.278 kg �9 m -3 
p =2.95 • 10-3 mol .L -~ 

393.54 9.445 
410.03 9.832 
440.06 10.525 
466.42 11.139 
497.27 11.860 
541,22 12.904 
588.19 14.033 
629.73 15.047 
395.56 9.492 
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Table I. (Continued) 

Temperature Viscosity 
T 

(K) (#Pa.  s) 

Series 4, 
p'  = 0.591 kg .m -3 
p = 6.28 x 10 -3 mol �9 L -1 

437.22 10.421 
464.94 11.050 
493.83 11.743 
522.71 12.421 
543.44 12,925 
564.94 13.451 
594.00 14.167 
622.45 14:867 
436.25 10.398 

Series 5, 
y =  1.103 k g . m - 3  
p = 11.72 x I0 -3 mol �9 L -1 

437.28 10.384 
465.12 11.047 
494.14 11.734 
523.10 12.412 
544.26 12.931 
565.70 13.450 
594.25 14.162 
623.61 14.887 
436.85 10.379 

Series 6, 
p' = 1.527 kg. m-3  
p = 16.23 • 10 -3 tool. L 1 

437.24 10.373 
466.06 11.069 
495.08 11.747 
522.34 12.398 
543.11 12.910 
564.69 13.451 
593.43 14.165 
622.62 14.880 
436.35 10.359 

Series 7, 
p' = 2.170 k g . m  -3 
p = 23.06 • 10 3 tool- L 

465.32 10.989 
494.03 11.672 
522.99 12,363 
544,40 12.893 
565,96 13,421 
594,53 14.158 
623.96 14.885 
465,71 10.997 



810 Vogel and Neumann 

densities, the highest isotherms of viscosity as a function of density have to 
be inspected strictly [10, 17, 18]. 

Three series of measurements at low densities were carried out several 
years ago [19]. These data were included here after a slight correction of 
the viscosity values due to an improved evaluation by means of the Newell 
procedure. In Table I the results are recorded, together with the density, as 
the first three series of measurements, marked "old," whereas the new data 
correspond to the last four series. A comparison of the data points for the 
highest isotherms proved the existence of a thermal alteration signaled by 
an excessive increase in the viscosity values of series 1. Therefore, data of 
this series were excluded from further evaluation for isotherms at 
temperatures higher than 570 K (see below). The following equation was 
fitted to the experimental data of each individual series of measurements: 

(IR~BC)  (T)=Sexp Aln TR D (4) 

with 

T 
S = 10 #Pa - s, TR = 298.15 

In Table II the parameters of Eq. (4), the standard deviations o~, and the 
root-mean-square deviations (rms) are listed. Viscosity values calculated at 
fixed smoothed temperatures are shown as open circles for five isotherms 

Table II. 

Series A 

Parameters of Eq. (4) for the Series of Measurements on Phenol Vapor 

i 

Root mean 
SD square deviation, 

103 o, 102 rms 
B C D (#Pa-s)  (%) 

1 old 1.28106 
2 old 1.39032 
3 old 1.42879 

4 0.745065 
5 1.82085 
6 1.04699 
7 0.284011 
*~ 1.20347 
**b 0.165822 

0.564311 --0.0753911 -0.796796 9.42 5.67 
1.09572 --0.350597 -1.07336 3.39 1.93 
1.22434 --0.405412 -1.14846 2.02 1.45 

-1.34152 0.763764 0.315533 5.27 3.33 
2.48517 --0.931243 -1.92083 5.80 3.44 

-0.233188 0.240877 -0.316698 9.34 5.77 
-3.20080 1.65226 1.34050 8.32 4.39 

0.494630 -0.112934 -0.701058 1.88 1.25 
-3.50965 1.72803 1.55890 1.16 0.87 

a At zero density, 443 ~< T~< 623 K. 
b At 0.1013 MPa, 463 ~< T<~623 K. 
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in Fig. 1. For a comparison error bars of 0.1% at a low and a high 
temperature are plotted. Equation (1) was fitted to the points of each 
isotherm in 10 K intervals between 443 and 623 K in order to obtain the 
zero-density and initial density viscosity coefficients. In Table II! some 
least-squares values of r/0 and r/l are given, together with their individual 
standard deviations a,10 and a~i as well as with the standard deviation a~ 
for the data set. The straight lines in Fig. 1 represent values calculated via 
Eq. (1). In Fig. 2 values of the second viscosity virial coefficient B, are 
plotted as a function of temperature with error bars resulting from 

(~1 + %)/~0. 
To the best of our knowledge, there are no data in the open literature 

for the viscosity of phenol vapor. Because experiments are very often 
performed at atmospheric pressure, viscosity values at 0.1013 MPa were 
calculated by means of Eq. (1) for a comparison with future measurements. 
In order to take into account the initial density dependence of viscosity in 
an accurate manner, the densities needed for pressures of 0.1013 MPa were 
calculated including the second pressure virial coefficient B. The tem- 
perature function of B for phenol vapor was analyzed and evaluated by 

14.95 

14.90 
14.85 

13.65 
13.60 

!3.55 

09 

12.45 

::~ !2.40 

12.35 

11.30 
11.25 
11.20 
I I 1 5  

10.60 
10.55 
10.50 
10.45 

0.00 

o ' i 

t i 

O.Ol o.o2 
-1 

p, too l .  L 

0.I% 623.15 
O_ o _ 0 0 �9 
0 0 

I 

o ' i o t , 

I r ] 

O ' P J ' 

443.15 1 

0.05 

Fig. 1. Viscosity of phenol as a function of density for several isotherms. 
r/=r/o+ ~/lp; ( 0 ) a t  0.1013 MPa, calculated. 
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Zero-Density and Initial Density Viscosity Coefficients of Phenol Vapor 
for Several Isotherms According to Eq. (1) 

Temperature 
T 

(K) 

Zero-density Initial density 
Number viscosity viscosity SD 
of points r/0 _ o-,i 0 r/1 -t- ff~t 103 o-, 

(n) (#Pa .s) (#Pa-s .  L-mol  - I  ) (/~Pa �9 s) 

443.15 
463.15 
483.15 
503.15 
523.15 
543.15 
563.15 
583.15 
603.15 
623.15 

6 10.594 + 0.008 - 5.127 + 0.880 11.6 
6 11.057 + 0.009 -4.698 + 0.979 12.9 
7 11.527 + 0.008 -4.860 -- 0.651 13.0 
7 11.998 __+ 0.008 -4.508 +__ 0.680 13.6 
7 12.471 __+ 0.008 - 3.952 + 0.702 14.0 
7 12.948 + 0.009 - 3.299 _+ 0.740 14.8 
7 13.428 __. 0.010 -2.619 + 0.801 16.0 
6 13.902 + 0.012 - 1.306 + 0.928 16.7 
6 14.386 _ 0.012 -0.449 + 0.933 16.8 
6 14.875 + 0.013 0.359 + 0.988 17.8 
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Bich and Opel [20] on the basis of experimental data between 477 and 
632 K by means of the 12-6 8-3 potential. Values calculated from this 
potential model for the temperature range from 343 up to 643 K were used 
to fit the coefficients of the following polynomial in l/T: 

4 
ak 

k=O 

The following coefficients ak have been obtained, when the second pressure 
virial coefficient B is given in L - t o o l - i .  

ao = -4.43827 

al = 9.49430 x 103 

a2 = -7.89445 x 106 

a3 = 2.88043 x 109 

a 4 : -4.32139 x 1012 

The parameters of Eq. (4) for the viscosity coefficient at 0.1013 MPa as 
well as for the zero-density viscosity coefficient are also recorded in 
Table II including the temperature ranges of validity. The filled circles 
plotted in Fig. 1 correspond to calculated viscosity values at 0.1013 MPa. 

3. THEORY OF THE REDUCED SECOND 
VISCOSITY VIRIAL C O E F F I C I E N T  

Apart from the Rainwater-Friend theory, which is the most successful 
scheme, the modified Enskog theory (MET) can also be used to predict the 
second viscosity virial coefficient B, in the case of real gases. 

The Enskog theory for a hard-sphere gas [21, 1] takes into account 
kinetic contributions resulting from the flow of molecules, collisional 
transfer contributions due to the finite size of the molecules, and the 
modification of the collisional frequency by a third particle. Thus, 
collisional p~ocesses between two monomers and among three monomers 
are represented as 

C 
B, = B~ 2) + B~ 3/= 0.8b - X (1) = 0.8b - ~ (6) 

Here b and c are the second and third pressure virial coefficients of a hard- 
sphere gas, whereas )(1) is the first density coefficient of the equilibrium 
radial distribution function at contact. The Enskog theory has to be 
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modified [21 23] to use it for the treatment of the viscosity of a real 
moderately dense gas characterized by the formation of bound states as a 
consequence of attractive forces. Although no theoretical foundation can be 
given for the modification that the pressure of the hard-sphere fluid is to 
be replaced by the thermal pressure of the real dense fluid, the MET 
predicts quite well B, for real gases [17, 10]. In the MET the reduced 
second viscosity virial coefficient B* is given by 

B*=~Tz 0.8 B*+ dT*} B * + T * ~ J  (7) 

where B* and C* are the reduced second and third pressure virial 
coefficients for the real gas or for an assumed intermolecular potential 
model. In particular, the MET is useful in the case of real moderately dense 
gaseous mixtures, because the Rainwater-Friend theory has not been 
extended to mixtures yet [24]. 

In the Rainwater-Friend theory [4-6, 9] B~ is represented by means 
of three contributions, one for the collisional transfer between two 
monomers and the others for collisional processes among three monomers 
and between a monomer and a dimer. 

Rainwater [4] improved the two-monomer collisional transfer con- 
tribution B~ 2) due to Hoffman and Curtiss [8] by limiting the integrations 
in their expressions, which are similar to the second pressure virial coef- 
ficient B, and in special collision integrals to the free phase and trajectory 
space. Thus, the effect of bound states is truly excluded from the evaluation 
of the two-monomer contribution. 

(3) The three-monomer contribution B, was evaluated by Rainwater and 
Friend [5, 6, 25] in the same manner already applied by Hoffman and 
Curtiss [-8]. Here the main contribution of triple collisions is due to 
excluded volume effects, whereas the effect of sequences of successive binary 
collisions is assumed to be negligible for real gases, because it amounts to 
only about 3% for hard spheres, too. In analogy to hard spheres, the 
shielding of a colliding pair by a third particle is taken into consideration 
by a n  expression connected with the equilibrium radial distribution 
function. 

R 
B (3)* - (9) 

;7 87~20.3~(2, 2 ) ,  
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The multidimensional integral R in the reduced form of this contribution 
includes the first density coefficient of the equilibrium radial distribution 
function [25]. 

According to the proposal of Stogryn and Hirschfelder [7], Rainwater 
and Friend [5, 6] modeled a moderately dense gas as a mixture of 
monomers and dimers via the first approximation for the transport proper- 
ties of a dilute binary gas mixture [1, 2]. Because of the uncertainty and 
complexity of the monomer-dimer collisional process, i t  is assumed that 
the interaction potential between the monomer and the dimer is known 
and is of the same form as the monomer monomer potential and 
characterized by the potential parameter ratios 

6 =aM D (10) 
o- M 

0_CM D (11) 
8M 

Friend and Rainwater [5-1 determined these potential parameter ratios 
by fitting the theoretical expressions for the monomer-dimer contributions 
to experimental data for the second viscosity and second thermal conduc- 
tivity virial coefficients B, and B;~ (B~. only for monatomic gases). They 
used their calculated values of the two-monomer and three-monomer 
contributions for the Lennard Jones 12-6 potential model and obtained 
the following values for the ratios: 

6 = 1.02 and 0 = 1.15. 

Bich and Vogel [9-1 deduced slightly improved values by using additionally 
own experimental data of B, for polyatomic gases: 

6 = 1.04 and 0 = 1.25 

4. ANALYSIS AND CONCLUSIONS 

The temperature function of the zero-density viscosity coefficient 
experimentally found for phenol was used in the framework of the 
Chapman-Enskog theory [1,2] to obtain the Lennard-Jones 12-6 
potential parameters. 

elk = 497.4 K and o- = 0.5527 nm 

They are needed to reduce the second viscosity virial coefficient B, and the 
temperature T according to Eqs. (2) and (3). Figure 3 presents curves of 
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the modified Enskog theory as well as of the Rainwater-Friend theory for 
the two different sets of the potential parameter ratios 6 and 0 in 
comparison with the experimental data for phenol vapor. Data for benzene 
[17], toluene, and p-xylene [18] are also included in the comparison. 

The Rainwater-Friend theory with the parameter ratios 6 and 0 
obtained by Bich and Vogel [9] represents quite reasonably the 
experimental B, data for the aromatic vapors including phenol. In this con- 
nection it has to be stressed that the Lennard-Jones 12-6 potential is 
unsuitable for monatomic gases and, of course, for polyatomics, too. An 
improvement could be reached only by extending the calculations to other 
more realistic intermolecular potential models. In addition, the ratios 6 and 
0 have been optimized by using experimental data for monatomic gases, 
nitrogen, carbon dioxide, ethane, ethene, sulfur hexafluoride, neopentane, 
n-hexane, cyclohexane, and benzene as the only aromatic vapor I-9]. The 
theorem of corresponding states, which is the basis for the choice of com- 

1 

0 

1 

2 

-~ i / " 
5 i 2 

]i 
- 6  :, , ,  I 

2 10 

T *  

Fig. 3. Reduced second viscosity virial coefficient B* as a 
function of the reduced temperature T* for the Lennard--Jones 
12-6 potential. ( Q )  Phenol, present work; ( V )  benzene [17];  
(i I) toluene 1-18]; ( A )  p-xylene [-18]; ( . . . . .  ) modified 
Enskog theory (MET) [21, 22, 23];  ( . . . . . . . .  ) Rainwater-- 
Friend theory [5,  6]  (6 = 1.02, 0 =  1.15); ( - - )  Rainwater- 
Friend theory, Bich and Vogel [ 9 ]  (6 -" 1.04, 0 = 1.25). 
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mon  values for 6 and 0, is a very rough approximat ion  for the behavior  of 
such a wide variety of substances. Therefore, the prediction of B* as a 
function of T* for phenol  by means of the Ra inwate r -Fr iend  theory as well 
as by the M E T  is surprisingly good. 

As already ment ioned in Section 1, effects of the format ion of  bound  
states are completely excluded from the two-monomer  contr ibut ion B~ 2)* 
of the Ra inwate r -Fr iend  theory, but  they could possibly still be included in 
the th ree-monomer  contribution.  In our  opinion, the first density coefficient 
of the equilibrium radial distr ibution function in the integral R of Eq. (9) 
includes bound  states in an analogous  manner  as in the case of the second 
pressure virial coefficient for a real gas. Figure 4 represents the different 
contr ibutions to the reduced second viscosity virial coefficient B*. The 
numerical  values have been given by Rainwater  and Friend [ 6 ]  and by 
Vogel and Hendl  [18] .  In  both  variants of the Rainwater -Fr iend  theory 
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;; ii . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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i i I 
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Fig .  4, Contributions to the reduced second viscosity 
virial coefficient B* according to the Rainwater-Friend 
theory. ( - - - - - - )  Collisional transfer contribution of 
two monomers; ( - - - )  kinetic contribution of three 
monomers; ( . . . . . .  ) monomer-dimer contribution by 
Rainwater and Friend [5, 6] (6 = 1.02; 0= 1.15); 
( . . . . . . . . .  ) monomer~timer contribution by Bich and 
Vogel [9, 18] (5 = 1.04, 0 = 1.25); ( ) total contribution 
by Rainwater and Friend [5,6] (6=1.02, 0=1.15); 
( ......... ) total contribution by Bich and Vogel [9, 18] 
(5 = 1.04, 0 = 1.25). 

8 4 0 / 1 4 / 4 - 1 4  
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the same calculated values of B~ 2)* and B~ 3)* for the Lennard-Jones 12-6 
potential have been used, but the contribution for the collisions between a 
monomer and a dimer B~ M- D), has been determined by fitting to different 
experimental data of B*. Bich and Vogel [9] were able to use a larger and 
better experimental material. B~ M- m,  for this variant of the Rainwater- 
Friend theory is practically zero, whereas the monomer-dimer contribution 
in the original version by Rainwater and Friend increases to more positive 
values with decreasing reduced temperature. In principle, the monomer- 
dimer contribution should become negative for low reduced temperatures. 
The conclusion from these findings is that the formation of bound states 
has already been included in the three-monomer contribution arid that the 
monomer-dimer contribution has to be zero for all reduced temperatures. 
A further consequence should be that the calculation of the three-monomer 
contribution has to be repeated according to the premise that the integra- 
tions in connection with Eq. (9) are to be limited to the free phase space. 
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